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Abstract

The growing importance of subject-specific modeling and simulation in medical applications has increased
the need for automatic techniques for creating high-quality meshes directly from medical data. We discuss
the main aspects related to volumetric mesh generation from iso-surfaces. We take a practical approach, and
the main focus of this paper is evaluating processing pipelines using widely available tools. In our processing
pipelines, we are trying to evaluate both the surface mesh and tetrahedral mesh quality, and their interac-
tions. For the iso-surface extraction, we explore a number of widely available tools, in particular, Afront[15],
CGAL[2], Macet[5], Dual Contouring[9] and Marching Cubes[11]. For tetrahedral mesh generation, we ex-
plore using TetGen[16], NetGen[13] and CAMAL[3]. We use VisTrails [1], a provenance-enabled workflow
system, for assembling the processing pipelines, and comparing the results. Our plan is to make our process-
ing pipelines available for the community, so that our results can be fully reproduced by others. In fact, our
hope is that the comparison methodology used here makes it easier for others to build and compare alternative
processing pipelines.

Introduction

Tetrahedral mesh generation from volumetric data is one of the most intricate problems
in modeling and simulation for medical applications. Difficulty comes from several com-
plex steps that are prone to numerical error which comprise the processing pipeline (see
figure 1). For instance, the iso-surface extraction step, typically employed to generate the
polyhedral surface mesh that bounds the simulation domain, can dramatically impact the
subsequent step of tetrahedral mesh generation, since this step is very sensitive to badly-
shaped elements in the input surface mesh. A great deal of effort has been spent to solve
each of these tasks independently, but little work has been done on evaluating the differ-
ent combinations of algorithms in each of these steps to determine how to obtain the best
results for a given situation.
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Figure 1: The traditional pipeline for tetrahedral mesh generation from volumetric data
(disregarding the volume pre-processing).

In this work, we present an appropriated framework that allows a more elaborate investi-
gation of the several aspects involved in this pipeline, as well as, allowing for combination
of possible solutions at each step. Our work uses Vistrails [1], a provenance-enabled work-
flow system, for supporting the comparative analysis of the several different configurations.
Since each algorithm comprises a building block in the workflow, exploring other alterna-
tives such as replacing building blocks is naturally accomplished. The system also provides
complete provenance on the changes made to the processing pipeline by the user. Also,
comparison of different pipelines is easily performed since output can be sent to a spread-
sheet that allow simultaneous exploration of the results using the same views. Most impor-
tantly, all the results generated in a given experiment can be easily reproduced elsewhere
by simply sharing the Vistrail description, which allows others to add new comparisons or
other components.

In our current analysis we are considering five different isosurface extraction algorithms
(Afront[15], CGAL[2], Macet[5], Dual Contouring[9] and Marching Cubes[11]) and three
tetrahedralization methods (TetGen[16], NetGen[13] and CAMAL[3]). One of the inter-
esting results of our work is to show that a provenance-enabled, workflow analysis tool,
such as Vistrails, is of great usefulness in managing a large-scale comparison experiment.
We illustrate the effectiveness of Vistrails by summarizing the main results of comparing
different combinations of polyhedral and tetrahedral mesh generators.

Mesh Generation Tools

In this section, we briefly describe the algorithms utilized in the comparisons. Our intent
here is not to supply a detailed review about each technique, but highlight the compu-
tational and mathematical mechanisms these techniques are based on, thus making clear
their requirements and behavior.

Polyhedral Surface Mesh Generators

Afront: Afront is an advancing-front triangulation algorithm that can be applied to many
different meshing scenarios. It makes use of a guidance field to determine triangle sizing
that is adaptive to the curvature of the input surface, but also maintains smooth gradation
to prevent poor quality triangles from being created. The prototype implementation can be
used to generate optimized meshes from other meshes (remeshing), from volumes defined
on regular and irregular grids (isosurface extraction), and from point sets. It can be used to
mesh either the entire input surface or just a local region, and can preserve sharp features
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that are annotated ahead of time (see Schreiner, et al., [15]).

Marching Cubes: Marching cubes is a well-known algorithm for extracting a triangle
mesh of an isosurface from a 3D scalar field. The algorithm proceeds through the scalar
field, taking eight neighbor locations at the corners of each cube within the base mesh, and
determining the triangles needed to represent the part of the isosurface that passes through
each cube. The individual triangles are fused into the desired surface. For efficiency, each
cube in the base mesh is assigned a template of predetermined triangle arrangements from
a precomputed list of 256 possible configurations based on where the isosurface intersec-
tions within the cube occur. Finally, each vertex of the generated triangles is placed in the
appropriate position along the cube’s edge by linearly interpolating the two scalar values
connected by that edge.

Macet: Marching Cubes is a popular choice for isosurface extraction from regular grids
due to its simplicity, robustness, and efficiency. However, one of the key shortcomings of
this approach is the quality of the resulting meshes, which tend to have many poorly shaped
and degenerate triangles. This issue is often addressed through post-processing operations,
including smoothing. While these improve the mesh, they do not remove all degeneracies,
and incur an increased and unbounded error between the resulting mesh and the original
isosurface. Rather than modifying the resulting mesh, the Macet algorithm modifies the
grid on which Marching Cubes operates before the mesh is generated. Considering the
edges of the Marching Cubes grid that contain intersections (active edges), the algorithm
applies transformations that change edge locations to improve the quality of the resulting
triangles. These edge transformations are embedded in the core of the Marching Cubes
algorithm and incur in an overhead of up to twice the time of the original algorithm, but
greatly increase the quality of the worst triangle in the extracted isosurface.

Dual Contouring: Dual Contouring is a feature-preserving, iso-surfacing method to ex-
tract crack-free surfaces from both uniform and adaptive octree grids. This technique can
be seen as an hybrid of the Extended Marching Cubes [10] and SurfaceNets [8] as it make
use of Hermite data and quadratic error function minimization to position the vertices of
the surface mesh (as Extended Marching Cubes) and the dual topology to connect such
vertices (as SurfaceNets) . Dual Contouring tends to generate better quality triangles than
Marching Cubes while still being very effective in representing sharp features, rendering
this surface mesh generation technique a good alternative to the popular Marching Cubes.

CGAL: CGAL is a C++ library that provides easy access to efficient and reliable geomet-
ric algorithms, including a surface mesh generation technique based on Delaunay triangu-
lation [2]. The algorithm implemented in CGAL uses the notion of ε-sample, a concept
widely employed in surface reconstruction from unorganized points, to build triangulated
surfaces that are topologically equivalent and geometrically close to the original surface.

Tetrahedral Mesh Generators

We have utilized two freely available tetrahedral mesh generation tools for ease of use and
availability. We have also included comparisons with a commercially available tetrahedral
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mesh generation package.

TetGen: TetGen corresponds to a suite of techniques to generate different tetrahedral
meshes from three-dimensional point sets or domains with piecewise linear boundaries.
In particular, we use the module that computes the Constrained Delaunay Tetrahedraliza-
tion (CDT) from the isosurface mesh produced by one of the algorithms described in the
previous section. The TetGen implementation of the CDT is based on the incremental edge
flipping algorithm proposed in [6]. Since this algorithm preserves triangles in the bound-
ary, the edge flipping test is very sensitive to the quality of the input mesh, and in some
situations numerical problems are so severe that no CDT is generated.

NetGen: NetGen is an automatic 3D advancing-front tetrahedral mesh generator that ac-
cepts input from constructive solid geometry (CSG) or boundary representations (BRep)
from the STL file format. NetGen contains modules for mesh optimization and hierarchi-
cal mesh refinement. Netgen is open source based on the LGPL license, and is available
for Unix/Linux and Windows.

CAMAL: The CUBIT Adaptive Meshing Algorithm Library (CAMAL) [3] contains sev-
eral of the CUBIT [3] project’s mesh generation algorithms. CUBIT’s goal is robust and
unattended mesh generation of complex geometries, scalable to millions of elements and
thousands of parts. CUBIT is best known for its pioneering work on automated quadri-
lateral and hexahedral mesh generation, but also maintains robust triangle and tetrahe-
dral meshing technologies. The tetrahedral mesh generation tool included in CAMAL is
TetMesh-GHS3D[12], a package to automatically create tetrahedral meshes from of closed
triangular surface meshes, with little or no user interaction. The implementation is based
on the algorithm described in [7], and corresponds to another variation of a Constrained
Delaunay Triangulation, and is, therefore, sensitive to the quality of the input mesh and
may be prone to generate tetrahedral meshes with slivers if the boundary mesh does not
maintain high quality.

Comparisons

In this section we present a summary of the main results we have obtained in comparing
the different configurations for the tetrahedral mesh generation pipeline. Besides showing
these quantitative and qualitative results we show how useful Vistrails is in the organization
and management of the tests we have carried out. In fact, Vistrails makes the task of han-
dling the pipeline much more friendly and intuitive, as the whole pipeline can graphically
be depicted. Furthermore, the user can interact with the graphical workflow, changing com-
ponents or creating new branches. Figure 2 shows the Vistrails interface and the workflow
we have devised to verify how TetGen, NetGen, and CAMAL behave when Afront is used
as the surface extraction algorithm.

Figure 2 shows (highlighted on top of the workflow window) the box representing the
Afront algorithm. It is important to point out that by only changing the Afront box to
another surface mesh generation tool (Marching Cubes, for example), a completely new
set of tests can completed. Another important benefit provided by Vistrails is that all the
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Figure 2: Vistrails interface: a) workflow employed to verify the behaviour of TetGen,
NetGen, CAMAL when Afront is used as surface mesh extractor; b) The box representing
the Afront algorithm.

tests conducted in previous run can be stored so as to keep the complete history of the
experiments.

Table 1 shows some results selected from the tests we have carried out. Figure 3 shows
the meshes of the silicium data set. The tests have been run on an AMD Opteron 242
processor (1.6 GHz) with 2 GB of RAM memory. NetGen has turned out to be less robust
than TetGen and CAMAL, as noted in the silicium data set, where the NetGen mesher was
not able to produce an appropriate tetraedral mesh for each of the given surface meshes. We
can also see from table 1 that the combination Afront-CAMAL tends to generate a larger
number of tetrahedra than other combinations, and the worst tetrahedron (we have used the
Scaled-Jacobian measure, provided by Verdict Library [14]) is generated when Marching
Cubes is used as surface mesh extractor.

Conclusion

We have provided comparisons for several surface (triangle) and volume (tetrahedra) mesh
generation tools on a collection of models. These tools were implemented in a provenance-
enabled workflow system utilizing VisTrails which enabled quick and easy comparisons
for timing, sizing and quality between the various methods. The tools highlighted are used
“out-of-the-box” and no additional optimization of the mesh was performed. Improved re-
sults for each of the tools may be possible. Because of the growing need for freely available
mesh generation tools for research purposes, this comparison was viewed as timely to pro-
vide data for varied research efforts to find and implement tools that will provide adequate
results, specifically for biomedical mesh generation activities.
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Figure 3: Silicium meshes from left to right: Afront, Macet, Dual Contouring, March-
ing Cubes, CGAL. Top to botton: Surface mesh, zoomed surface mesh, TetGen, NetGen,
CAMAL.
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